Scaling Robot Learning with Skills Towards Furniture Assembly and Beyond

Youngwoon Lee

Dissertation Defense

October 27, 2022

Commellegit Robots work great in factory! SUBSCRIBE YouTube.com/Gommeblog

BMW Car Factory ROBOTS - Fast Manufacturing: https://www.youtube.com/watch?v=P7fi4hP_y80

Why not at home?

[CES 2021] Next Generation Robotics | Samsung: https://www.youtube.com/watc

=qrPsa7JsPBU

Complexity of tasks

Diversity of environments

If you know how to solve,

Imitation Learning (IL) Learning from demonstrations Requiring a lot of demonstrations

Credit: Yuke Zhu's slides

Robot Learning — data-driven approach

If you don't know how to solve,

Reinforcement Learning (RL) Learning through trial-and-error Requiring a lot of trials

Limited to simple and short tasks in controlled environments

BC-Z [Jang et al. CoRL 2021]

Robot Learning — data-driven approach

My research goal:

Scaling robot learning to real-world tasks

complex long-horizon real-world Limited to simple and short tasks in controlled environments

Can RL solve complex long-horizon tasks?

Obstacle course

Furniture assembly

 π_2

\dots sample efficiency (\because)

Can RL solve complex long-horizon tasks?

 $\pi_{ ext{walk}}$ $\pi_{ ext{crawl}}$

Skills

Temporally extended actions

Prior experience

Similar experience, prior knowledge, etc

Scaling robot learning to long-horizon tasks

Transition

Transition policy [ICLR'19]

Skill chaining via fine-tuning [CoRL'21]

Skill-based RL [CoRL'20, CoRL'21, CoRL'22]

Algorithm

11

Standard manipulation benchmarks

Limited to simple and short tasks

Meta-World

Robosuite

Scaling robot learning to "realistic tasks"

We need a benchmark for complex and long-horizon tasks

IKEA Furniture Assembly Simulator

Lee et al. "IKEA Furniture Assembly Environment" ICRA 2021

Realistic 3D environment

Camera

We propose the first benchmark for complex, long-horizon tasks

Segmentation map

Lee et al. "IKEA Furniture Assembly Environment" ICRA 2021

Scaling robot learning to long-horizon tasks

Transition

Transition policy [ICLR'19]

Skill chaining via fine-tuning [CoRL'21]

Skill-based RL [CoRL'20, CoRL'21, CoRL'22]

Algorithm

Leverage "skills"

Reusable Skills

Catch-Dribble-Shoot

Learning a complex task efficiently: (1) learning **skills in isolation** (2) learning **"transitions"** between skills

Fail since these skills never learned to connect

Good initial states for π_{walk}

"Initiation set"

Good initial states for π_{Walk}

Obstacle course

Lee et al. "Composing Complex Skills by Learning Transition Policies" ICLR 2019

Smoothly connect skills

leta policy	
Valking	Crawling

eta policy	
/alking	Crawling
	$\pi_{ ext{jump}}$

Repeat until reach a good initial state

Model

Model

What is reward for learning a transition policy?

Success of the following skill

 $\pi_{ ext{jump}}$

Bad initial states for π_{walk}

Good initial states for π_{walk}

Successful execution of the following skill: +1

Bad initial states for π_{walk}

Good initial states for π_{walk}

Successful execution of the following skill: +1 Failing execution of the following skill: 0

Bad initial states for π_{walk}

Good initial states for π_{walk}

Successful execution of the following skill: +1 Failing execution of the following skill: 0

Bad initial states for π_{walk}

Lee et al. "Composing Complex Skills by Learning Transition Policies" ICLR 2019

inary	v and sparse !	
	1	

Good initial states for π_{walk}

Proximity reward

Instead of binary reward

Bad initial states for π_{walk}

Good initial states for π_{walk}

Proximity reward

Instead of binary reward, use "proximity prediction", which estimates how close to good initial states

Bad initial states for π_{walk}

Lee et al. "Composing Complex Skills by Learning Transition Policies" ICLR 2019

Good initial states for π_{walk}

We define *proximity* as: $P(s) = \delta^{step}$ $\delta \in (0,1)$

Proximity reward

Bad initial states for π_{walk}

and provide *proximity reward* every step: $P(s_{t+1}) - P(s_t)$

Lee et al. "Composing Complex Skills by Learning Transition Policies" ICLR 2019

Instead of binary reward, use "proximity prediction", which estimates how close to good initial states

Good initial states for π_{walk}

- We define *proximity* as: $P(s) = \delta^{step}$ $\delta \in (0,1)$

Patrol

Patrol

Patrol

Walk Forward

Transition

Serve (Toss & Hit)

Transition

Hit

Serve (Toss & Hit)

Serve (Toss & Hit)

We propose to reuse skills to compose complex, long-horizon tasks.

Naive execution of skills fails since the skills never learned to connect.

Transition policies learn to smoothly connect skills.

Lee et al. "Composing Complex Skills by Learning Transition Policies" ICLR 2019

Summary – Transition policy

- **Proximity predictors** provide dense reward for efficient training of transition policies.

Scaling robot learning to long-horizon tasks

Transition

Transition policy [ICLR'19]

Skill chaining via fine-tuning [CoRL'21]

Skill-based RL [CoRL'20, CoRL'21, CoRL'22]

Algorithm

Let's try furniture assembly!

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Let's try furniture assembly!

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Initiation set I_i : all Termination set β_i : su

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Initiation set I_i : all successful **initial** states of π_i

Termination set β_i : successful **terminal** states of π_i

Initiation set I_i : all successful initial states of π_i Termination set β_i : successful terminal states of π_i

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

not trivial and sometimes **not** possible!

Let's try furniture assembly!

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Chaining skills

Clegg et al. "Learning to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning" SIGGRAPH Asia 2018

Chaining skills

Clegg et al. "Learning to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning" SIGGRAPH Asia 2018

Chaining skills

 π_i

Increase I_i

Clegg et al. "Learning to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning" SIGGRAPH Asia 2018

Clegg et al. "Learning to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning" SIGGRAPH Asia 2018

Chaining more skills...

To chain more skills: (1) increase initiation set, while (2) keep termination set small

Clegg et al. "Learning to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning" SIGGRAPH Asia 2018

Chaining more skills...

Terminal STAte Regularization (T-STAR)

Fine-tune π_i to cover larger I_i

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Terminal STAte Regularization (T-STAR)

Fine-tune π_i to cover larger I_i

Reward π_i if a **terminal state** is close to I_{i+1} $R_{TSR}^i(s) = 1_{s \in \beta_i} D^{i+1}(s)$

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

GAIL+PPO

Learning from scratch

Fine-tune skills w/o

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Clegg et al. 2018

Ours

Fine-tune skills with terminal state regularization terminal state regularization

GAIL+PPO

Learning from scratch

Fine-tune skills w/o

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Clegg et al. 2018

Ours

Fine-tune skills with terminal state regularization terminal state regularization

Summary – T-STAR

We propose to fine-tune skills to compose complex, long-horizon tasks.

state distributions.

Our approach solves the furniture assembly tasks.

Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

- Naive fine-tuning of skills fails since the skills end up with very large terminal

- **Terminal state regularization** effectively encourage bounded terminal states.

Scaling robot learning to long-horizon tasks

Transition

Transition policy [ICLR'19]

Skill chaining via fine-tuning [CoRL'21]

Skill-based RL [CoRL'20, CoRL'21, CoRL'22]

Algorithm

Skill composition with pre-defined skills

Jumping

Walking

Crawling

- Requires manual definition of skill repertoire
- Requires skill execution order

Schaal "Dynamic Movement Primitives" 2006 Lee et al. "Composing Complex Skills by learning Transition Policies" ICLR 2019 Lee et al. "Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization" CoRL 2021

Can we learn skills from data?

Skill Prior RL (SPiRL)

Large Offline Dataset

Pertsch, Lee et al. CoRL 2020, CoRL 2021

Skill-based Model-based RL (SkiMo)

1. Extract Reusable Skills

Large Offline Dataset

2. Learn Skill Prior

Shi, Lim, Lee. "Skill-based Model-based RL" CoRL 2022

3. Learn Skill Dynamics Model

Results

Scaling robot learning to long-horizon tasks

Transition policy [ICLR'19]

Skill chaining via fine-tuning [CoRL'21]

Skill-based RL [CoRL'20, CoRL'21, CoRL'22]

Algorithm

My research goal

Scaling robot learning to real-world tasks

Complex, long-horizon

In the real world

Source env

Combining motion planner [CoRL'20, CoRL'21]

Policy transfer [RSS'21]

Transfer learning

Learning from Observation [CoRL'19, NeurIPS'21]

Imitation learning

My research goal:

Scaling robot learning to real-world tasks

Learning furniture assembly in the real world

Real-world benchmark

Diverse data Efficient learning method

Real-world benchmark

Diverse data Efficient learning method

Prior real-world benchmarks

YCB

Callie et al. "Yale-CMU-Berkeley Dataset for Robotic Manipulation Research" IJRR 2017 Yang et al. "REPLAB: A Reproducible Low-Cost Arm Benchmark Platform for Robotic Learning" ICRA 2019 Lee et al. "Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes" CoRL 2021

RGB-Stack

Lee et al. "Real-World Furniture Assembly Benchmark" In progress

Reproducible "real-world" benchmark

No sim-to-real gap

Long-horizon tasks

Consists of 3 - 6 parts to be assembled

Dexterous skills

Screwing, inserting, flipping — interactions between objects

A variety of task instances

8 tasks with different difficulties and challenges

Environment

Lee et al. "Real-World Furniture Assembly Benchmark" In progress

Furniture models

Lee et al. "Real-World Furniture Assembly Benchmark" In progress

Offline RL on 900+ trajectories

Success rates: 10-20%

Real-world benchmark

Assisted teleoperation for easy data collection

Human Teleoperation

Data

Dass*, Pertsch*, Lee et al. "Assisted Teleoperation for Scalable Robot Data Collection" In submission

Assisted Teleoperation

Large-scale robot dataset

"Real"-world data

Diverse environments

Large-scale data

Real-world benchmark

Leverage offline data

Scaling robot learning to real-world tasks

Complex long-horizon tasks in the real world High-complexity (high-DoF) robot systems **Diversity of tasks**

Future directions

Future direction 1: Complex tasks

Prior knowledge (e.g. skills, world model, priors) from data Unsupervised data collection Multi-modal sensory representations

Future direction 2: Complex robot systems

Navigation

Mobile manipulation

Dexterous & mobile manipulation

Future direction 3: Diverse tasks

Human videos (Ego4D, Youtube)

Credit: https://www.unlimited-robotics.com/

General-purpose robots

Learn from human video and text data X Meta-learning

Text data and instructions

Acknowledgements

CLVR lab @ USC & KAIST

Joseph Lim

Shao-Hua Sun

Karl Pertsch

Ayush Jain

Jesse Zhang

Edward Hu

Andrew Szot

Jingyun Yang

Sri Somasundaram

Zhengyu Yang

Jun Yamada

Han Zhong

Shivin Dass

I-Chun Liu

Gaurav Sukhatme

Stefanos Nikolaidis

Yuke Zhu

Anima Anandkumar

Alex Yin

Minho Heo

Doohyun Lee

Peter Englert

Scaling Robot Learning with Skills Towards Furniture Assembly and Beyond

Youngwoon Lee / youngwoon.github.io

