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Abstract—Deep reinforcement learning (RL) agents are able
to learn contact-rich manipulation tasks by maximizing a re-
ward signal, but require large amounts of experience, especially
in environments with many obstacles that complicate efficient
exploration. In contrast, motion planners use explicit models of
agent and environment to plan collision-free paths to faraway
goals, but suffer from model-inaccuracies in contact-rich tasks.
In this work, we propose to combine the benefits of both
approaches by formulating a novel action space for continuous
robotic control tasks that equips RL agents with long-horizon
planning capabilities. Using this action space we train model-
free RL agents that learn to decide when to make use of
the motion planner purely from reward signals. On multiple
simulated object manipulation tasks, we show that our motion-
planner augmented action space increases learning efficiency and
facilitates exploration in environments with many obstacles.

I. INTRODUCTION

In recent years, deep reinforcement learning (RL) has shown
promising results in continuous control problems [24, 7, 15,
18]. Driven by rewards, robotic agents were able to learn tasks
such as grasping [17, 9, 5, 16] and peg insertion [5]. However,
the prior works mostly have been demonstrated in controlled
and clean environments, whereas a real-world environment is
often cluttered with many objects and obstacles unrelated to
the task, which makes exploration by RL agents challenging
and data inefficient. This problem is exacerbated in situations
with sparse rewards where feedback is scarce and considerable
exploration is required before a learning signal is received.

Motion planning (MP) is an alternative to solve robot tasks
in complex environments, which has been widely studied in
the robotics literature [1, 12, 10, 3]. These methods find
a collision-free path between two robot states by searching
over a graph of feasible transitions in the robot’s configura-
tion space, providing asymptotic completeness and optimality
guarantees. In contrast to model-free RL approaches, MP
algorithms require explicit models of agent and environment
and struggle on tasks that involve rich interactions with objects
or other agents, where it is challenging to obtain accurate
models [20].

In this work, we propose to combine the strengths of both
motion planning and RL by augmenting the action space of
an RL agent with the capabilities of a motion planner. A

Fig. 1: Our framework composed of a motion planner and RL
policy. Given a state st, the RL policy outputs an action at,
which represents changes in the joint state. If the action is large
(i.e., ||at||∞ > η where η is a threshold), thus, likely to have
a collision, the action at is realized using the motion planner
to achieve collision-free execution. Otherwise, the action is
simply fed to the environment.

model-free RL method [7] can be used to learn an RL policy
that controls the robot by predicting state changes in joint
space [6]. While prior works with joint-space control [19]
constrain the action space to be small to prevent collision and
reduce controller error, we propose to allow a much wider
action range with the help of a motion planner that plans
collision-free paths to faraway goals.

Our framework has multiple benefits: (1) the proposed
framework can add motion planning capabilities to any RL
agent as we do not require changes to the agent’s architecture
or training algorithm. (2) The agent itself can decide when
to use which control approach: by predicting small target
displacements, the agent can fall back to conventional action
space, for example, when complex object manipulation is
required and motion planner solutions would be inaccurate.
In other situations, the agent can predict large displacements,
using the motion planner, for efficient exploration. Crucially,



this decision does not need to be pre-determined, but can
instead be learned by the agent through maximization of the
task reward. This allows the agent to adapt the use of the
motion planner to its own changing capabilities over the course
of training.

We evaluate our framework on simulated robot object
manipulation tasks in the presence of multiple obstacles and
sparse rewards that pose exploration challenges for RL agents.
We show that our motion planner augmented agent can quickly
learn to solve the tasks while model-free RL agents suffer from
slow convergence.

In summary, the contributions of this paper are as follows:
• We propose a flexible framework for augmenting an

RL agent with a motion planner to improve learning-
efficiency for robot control.

• We validate the benefits of our method with motion
planning augmented action spaces over model-free RL
on simulated object manipulation tasks.

II. RELATED WORK

There are several works that combine motion planners and
RL. Angelov et al. [2] proposes to integrate motion planner
options into hierarchical RL (HRL) to solve a compositional
task given demonstrations. Stulp and Schaal [21] proposes
a HRL framework in which low-level policies are dynamic
motion primitives [8]. Lee et al. [13] uses a motion planner
to move a robot arm to a target region and, when close
to an object, switch to model-free RL for learning contact-
rich manipulation. In contrast, our method does not require a
library of primitive skills or demonstrations. It also does not
require a pre-trained perception system to switch from motion
planner to model-free RL. Instead, we propose to learn how
to balance the use of the motion planner and model-free RL
to solve a task.

III. MOTION PLANNER AUGMENTED RL

A. Preliminaries

A Markov decision process (MDP) is defined by a tu-
ple (S,A,R,P, ρ, γ) consisting of states, actions, reward
R : S ×A → R, transition function P : S × A → S , initial
state distribution ρ, and discount factor γ ∈ [0, 1]. The agent’s
action distribution at time step t is represented by a policy
πθ(at|st) with state st ∈ S and action at ∈ A, where θ
denotes the parameters of the policy. For learning continuous
control policies we define the action space of the policy as
the displacement in the agent’s joint space at = ∆qt, where
qt represents a robot joint state.

Motion planning methods are mainly categorized into
sampling-based motion planning and trajectory optimization.
In this work, we use kinematic sampling-based motion plan-
ners. A motion planner computes a path from a given start
state qt to a given goal state g. We denote such a motion
planning query as τ1:H = MP(qt, g) where the resulting path
is represented as a dense sequence of H joint configurations
τ1:H = (qt+1, . . . , qt+H).

Algorithm 1: Motion Planner Augmented RL
Inputs:

Motion planner MP
Transition model P and reward R
Augmented transition model P̃ and reward R̃
Action limit η
Initial state distribution ρ
Policy πφ

for i = 1, . . . , N do
s0 ∼ ρ(s0), t← 0
while episode not done do

at ∼ πφ(at|st)
if ||at||∞ > η then

# MP execution
g ← qt + at
H, τ1:H ← MP(qt, g)
st+H ← P̃ (st, τ1:H)
rt ← R̃(st, τ1:H)

else
# Primitive action execution
H ← 1
st+1 ← P (st, at)
rt ← R(st, at)

end
D ← D ∪ {(st, at, rt, st+H)}
t← t+H
update πφ using model-free RL

end
end

B. Motion Planner Augmented Reinforcement Learning

To utilize motion planning within the RL framework, we
augment the continuous control policy’s action space with
the ability to make calls to a motion planner. The decision
whether to call the motion planner or directly execute the
predicted action is based on its magnitude ||at||∞, i.e. the
size of the predicted displacement, as illustrated in Fig. 1.
If the target state difference is small, the action is directly
executed using a feedback controller, as is common practice
in model-free RL. For target state differences ||at||∞ > η
that pass a threshold hyperparameter η, a motion planner is
called that computes a path τ1:H = (qt+1, . . . , qt+H) with
horizon H towards the goal defined as g = qt + at, which
is then executed on the robot with a feedback controller.
Crucially, this design gives the policy the freedom to chose
whether to call the motion planner or directly execute actions
in the environment by predicting large or small target state
differences respectively. The complete RL update loop with a
motion-planner augmented agent is described in Algorithm 1.

Formally, we extend the conventional RL formalism from
Section III-A to accommodate augmentation with motion
planners by assuming a generalized transition model on the
augmented action space st+H = P̃ (st, τ1:H) that also includes
the single-action case as a one-step trajectory. Further, we as-
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Fig. 2: 2- and 4-obstacle Pusher tasks. Target region for
sampling object (green ball) and goal (black circle) location
marked in the yellow region. The 4-obstacle Reacher is
identical to the 4-obstacle Pusher environment without the
object.

sume an augmented reward function R̃(st, τ1:H) that computes
the sum of rewards along the path τ1:H . This augmented action
space implicitly provides the robot with an option to call the
motion planner by giving faraway goals. This can be seen
as a semi-MDP [23] where the duration of an action varies
depending on the length of the path H .

C. Motion Planner Implementation Details

Sampling-based motion planning methods only distinguish
between configurations that are either valid or in collision with
the environment. This property makes it difficult to apply them
on manipulations tasks where contacts are required. A crucial
step to still being able to use these algorithms on manipula-
tion tasks is to separate the environment into manipulatable
and static objects. We adapt the collision checker to ignore
collisions between manipulatable objects and the robot. This
allows the algorithms to compute paths that manipulate the
objects of interests while staying away from static obstacles.

Motion planning is often computationally expensive and RL
requires many iterations to learn a policy. In order to prevent
slow training in the RL framework, we propose a planning
module that, when called by the policy, first interpolates a path
between the given start and goal state. If the interpolated path
is not collision-free, then a motion planner is called, which
can find a path even in the presence of many obstacles.

IV. EXPERIMENTS

We design our experimental evaluation to answer the fol-
lowing questions: (1) Can a model-free RL agent augmented
with motion planner capabilities solve complex manipulation
tasks more efficiently than off-policy RL agents? (2) Is the
motion-planner-augmented agent better able to explore the
environment? To answer these question, we conduct experi-
ments on three environments of increasing difficulty: in the
4-obstacle Reacher the agent needs to reach a target position
randomly sampled within a target region in the presence of
four obstacles. In the 2-obstacle Pusher, and 4-obstacle Pusher
(see Fig. 2) the agent needs to push an object into a goal

position in the presence of two and four obstacles respectively.
Positions of both object and goal get sampled inside the target
region. The state space consists of the agent’s joint angles as
well as positions of goal, pgoal, and object, pobj for the pushing
tasks. All of our environments are simulated in the MuJoCo
physics engine [25].

For our experiments, we use η = 0.1 that defines the thresh-
old when the motion planner is called for action execution. The
full action range is defined as a ∈ [−2, 2]. We use soft actor-
critic (SAC) [7], the state-of-the-art model-free RL algorithm,
as base agent for both the baseline and our method. For motion
planning we use the RRT-connect planner [11] from the OMPL
library [22]. The reward for the reaching task is defined as:

Rreach = −1||peef−pgoal||2≥0.04,

where peef is the end-effector position and 1 is the indicator
function. For the pushing tasks the reward is defined as:

Rpush = −0.3||peef−pgoal||2−0.9||peef−pobj||2 +150 ·1success,

where 1success indicates that the object is successfully pushed
to the goal.

A. Efficient RL with Motion Planner Augmented Action Spaces

We compare the success rate of our method to that of the
SAC baseline over the course of training in Fig. 3. We show
that the motion-planner augmented policy is able to learn the
tasks more efficiently than the baseline. This improvement in
learning efficiency is especially large in the most challenging
task, 4-obstacle Pusher, which requires the policy to learn
object manipulation in the presence of many obstacles.

We show a qualitative example of the learned behavior of
our agent on the 4-obstacle Pusher task in Fig. 4. By setting
wide target states it learns to use the motion planner for the
initial segments of the task that require to maneuver the agent
towards the target object without colliding with obstacles.
The motion planner is able to plan collision-free tasks and
successfully reaches the target object. The remainder of the
task requires more intricate control for pushing the object to
the goal, a task that the motion planner is not well-suited
to solve. Instead, the motion planner resorts to conventional,
model-free RL by predicting small state difference actions,
thereby successfully pushing the object to the goal location.
We emphasize that this switching behavior is purely learned
from rewards without pre-specified heuristics for when to use
which control approach. This shows that the agent can learn to
adjust the usage of the motion planner to it’s own capabilities
and the requirements of the task.

B. Improved Exploration through Motion Planning

To better understand why augmenting RL agents with mo-
tion planning capability improves training efficiency, we com-
pare the exploration behavior of the motion-planner augmented
agent and the SAC agent in Fig. 5. The SAC agent initially
explores only in close proximity to its initial position as it
struggles to find valid trajectories towards the goal region
in between the obstacles. In contrast, the motion-planner
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Fig. 3: Success rates of our motion planner augmented SAC (orange) and baseline SAC (blue) averaged over 4 seeds. Our
approach can leverage the motion planner to converges within a smaller number of policy interactions than the baseline. Note
that the number of policy interactions is not equivalent to the number of environment steps as the execution of motion planner
trajectories involves multiple primitive actions. Both SAC and ours are trained for the same environment steps.

Fig. 4: Successful episode of the motion planner augmented agent on the 4-obstacle Pusher task. In the initial phases of the
episode, that require reaching towards the object, the agent relies on the motion planner and sets wide target state differences
(target states overlayed in brown). The motion planner is able to reach the posed target states on collision-free paths. Once
the object is reached and more intricate manipulation is required, the agent switches to normal, model-free RL and directly
executes actions without using the motion planner. The agent learns this switching behavior directly from rewards without the
need to define pre-specified heuristics for when to use which control method.

Fig. 5: End-effector positions of SAC (left) and motion planner
augmented SAC (right) after the first 100k training steps in
4-obstacle Pusher. The usage of the motion planner allows the
motion planner augmented agent to explore the environment
more widely early on in training.

augmented agent can explore a wide range of target positions
by using the motion planner to find collision-free trajectories
to faraway goal states. This allows the agent to much quicker
learn the task, especially in the presence of many obstacles.

V. CONCLUSION

In this work, we propose a flexible framework that combines
the benefits of motion planning and reinforcement learning
for sample-efficient learning of continuous robot control tasks.
Specifically, we design a single RL policy with an action space
augmented by a motion planner. The policy learns when to
use the motion planner and a primitive action directly through
reward maximization without the need for pre-specified heuris-
tics. The experimental results show that our approach improves
the training efficiency over a conventional, model-free RL
baseline, especially in environments that require object ma-
nipulation in the presence of many obstacles.

Encouraged by the results presented in this paper, we plan
to apply this method to more complex robot manipulation
tasks such as peg-in-hole [5] and furniture assembly [14]
with realistic robot arms, both in simulation and in the real
world. We hypothesize that in these tasks efficient exploration
of the environment is a major bottleneck to policy learning
and assume that augmenting agents with motion planning
capabilities can help to address this problem. We also want to
explore more advanced planning techniques [4] that plan paths
on constrained configuration spaces that allow to describe
more complex behavior.
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